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ABSTRACT
In December 2020, the FDA issued the first emergency use
authorization for the use of COVID-19 vaccines. A natural
question that arose was the best way to administer vaccines
to reduce severe pandemic outcomes. Although tools exist
to display models or up-to-date COVID-19 data, few tools
incorporate both. To help with this situation, we designed
an interactive modeling tool which, given user input, mod-
els pandemic outcomes and displays them on a global map.
The Vaccine Modeling Impact Tool allows users to select and
adjust target parameters and useful data to visualize. They
can view an interactive global map of the model’s output with
more data available on zooming and clicking. We designed
the visualization front end, a data scraper to retrieve current
COVID-19 data, a model to simulate pandemic outcomes, and
a server to handle user requests and data flow. We aimed for
our project to be user-friendly enough that someone with only
basic public health knowledge could use our tool and could
gain useful insights.
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INTRODUCTION
In December 2020, the FDA issued the first emergency use
authorization for the use of Covid-19 vaccines. Some countries
began by restricting eligibility to vulnerable groups, whereas
others had no access to the vaccine and had to wait. As time
went on, eligibility requirements have changed for countries
and more vaccines are being approved. Many people, from
policy makers to the general public, have questions about
vaccine allocation. What is the best allocation strategy to
help prevent severe pandemic outcomes? How does vaccine
efficacy affect the number of infections? What is the minimum
percent of the population that needs to be vaccinated to ensure
herd immunity? One way to answer this question is by using
a model which can simulate pandemic outcomes. Although
such tools currently exist, they might be overly complicated
for the general public, be exclusive for a particular country or
state, or lack up-to-date data.
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To contribute to the solution, we designed The Vaccine Mod-
eling Impact Tool. This interactive modeling tool is hosted
on a website that allows the user to select and adjust target
parameters (such as the reproduction number, mortality rate,
vaccination rate, and vaccine efficacy); and useful data to visu-
alize (such as the number of individuals who have died or the
number of current infected). When the user clicks simulate,
they are then able to view an interactive global map of model
output with more data available on zooming and clicking. The
tool gathers data daily to display on the map and use as input
for the model. We aimed for our tool to help policy makers
use modeling tools to inform vaccine policy decisions, public
health researchers to compare the efficacy of various different
kinds of vaccine distribution methods and models, and the
general public understand the likely future course vaccine dis-
tribution. We aimed for our project to be user-friendly enough
that someone with only basic public health knowledge could
use our tool and could gain useful insights.

We created several pieces for the backend and frontend and
fit them together to create this project. We designed a simple
deterministic SEIRD model to model the pandemic. This
model is supplied with data from a data collection and parsing
tool that aggregates data from various different sources and
parses through it to find relevant data. We created a custom
map that allows users to view pandemic outcomes on a global
scale along with graphs to view the raw data. We designed
a flexible frontend with parameter tuning that is formatted
according to a configuration file. In this way, a user can easily
tune model parameters, and new models can be added to the
system in a straightforward way.

As a group, we learned many things by working on this project.
We learned to balance the line between complexity and simplic-
ity in the model; ensuring it was simple enough for a user to
understand and complex enough to provide reasonable results.
Visualizations can have many approaches, and knowing how
broad or narrow you want to go is an acquired skill. Creating
a framework through which to interface arbitrary models and
parameter tuning schemes requires considerable consideration
of trade offs between simplicity and customization.

In this paper, we begin by discussing related work by exploring
existing tools, discussing what we took inspiration from and
what we aimed to change. We then talk about our design
process, first talking about our overall plan and then going
into more depth regarding the individual components. We then
detail our system architecture, discussing precisely how the
individual pieces work in practice and how they come together.
We then discuss takeaways for the project and areas for future
improvement.

http://dx.doi.org/10.475/123_4


RELATED WORK
A number of tools meant to display pandemic related infor-
mation and model the pandemic already exist. Most aim to
either model different vaccination scenarios or display current
data for a particular area. However, we found no existing tool
that had the ability to scrape up-to-date data, show multiple
regions at once, and the user to modify parameters and the
model.

One tool we took inspiration from was the COVID-19 Scenario
Analysis Tool, made by the MRC Centre for Global Infectious
Disease Analysis, Imperial College London [9]. This inter-
active web page allows a user to choose a country and edit
parameters, such as different reproductive numbers and vac-
cine allocation, then run a simulation that displays pandemic
outcomes such as number of deaths, cases, and the healthcare
demand. We took inspiration from the interactivity of this tool.
Our work allows the user to change parameters and simulate
the result of this by clicking a simulate button. However, in
the COVID-19 Scenario Analysis Tool a user must select a
specific country. Our work differs from this by allowing the
user to model and view multiple countries at once on a map.
As the COVID-19 Scenario Analysis Tool was mostly devel-
oped before vaccine roll-out got going, it requires most input
regarding vaccination roll-out and efficacy to be provided by
the user. We wanted to take the burden off of the user to find
this data, and so our work scrapes up to date data regarding
vaccination. The model provided in the COVID-19 Scenario
Analysis Tool is also hard coded and cannot be switched out
for another model, which was something we wanted to do to
provide more flexibility for modelers.

Another tool we wanted to emulate were visualizations created
by news outlets, such as that by the New York Times [2].
These interactive articles display maps containing up-to-date
COVID vaccination related data for the United States, such
as the current number of people vaccinated per county, the
vaccine roll-out over time, and the current number allocation of
vaccines by age group. We took inspiration from the clean and
easy to parse visualizations in these articles, as well as their
usefulness in displaying current data that is retrieved daily.
However, these New York Times articles are often made for a
specific area, typically the United States. We wanted our tool
to not be exclusive to a single region or area. Although these
articles may present projections, such as how many people are
expected to be vaccinated by the end of the year, these articles
have little interactivity from the user or predictive power. A
user cannot play with parameters for vaccination and see how
it changes. We wanted to combine the clean visualizations and
up-to-date nature of these articles with an interactive tool.

Various research on pandemic vaccination models was con-
ducted. We eventually landed on a custom deterministic SEIR
(Suceptible, Exposed, Infected, Removed) model after looking
into various other types of models. A deterministic model
was chosen because it runs quickly when compared to non-
deterministic types and is easier to understand. In addition,
deterministic models that use systems of ordinary differential
equations were familiar to one of the members on our team.
Models that were considered included SEIR models that did

not distinguish between recovered and dead [8], SEIR models
that took virus-induced fatality rate as well as background
death rate [5], a SEIRS model that took into account rein-
fections[1]. We combined the ideas behind these models to
create a SEIR model that separated dead and recovered into
two categories, but did not take into account background fatal-
ity rate. We also took inspiration from models that took into
account age-structured models [6] and multiple vaccinations
[10]. Modeling age, multiple vaccinations, and varying repro-
duction numbers for different times in the pandemic would
have been more accurate, but given the short time and ambi-
tious goal to model the globe instead of a single country, this
was unfortunately was beyond the scope of the project.

More discussion of model research is discussed in the design
section under models.

DESIGN PROCESS

Overview and System Goals
The design of the system revolved around an initial assessment
of where a quantitative COVID-19 modeling tool would be
especially useful. After researching existing products and
brainstorming ways that the given problem space could be
addressed, it was decided that a new modeling tool designed
specifically for public health officials would prove valuable.
In particular, such a tool would provide valuable data-driven
insights and would improve upon on existing products that
require a significant amount of epidemiology expertise, have
a user interface that is complicated or verbose, and/or focus
analysis on a smaller scale (country specific, state specific,
etc.).

Supporting background information and insights were pro-
vided by Dr. Abie Flaxman of the Institute for Health Metrics
and Evaluation (IHME) at the University of Washington. Dr.
Flaxman introduced two pressing issues that would be exciting
to incorporate into a modelling tool: (1) vaccine hesitancy and
(2) global vaccine distribution.

Coupling the initial use case evaluation with the input from
Dr. Flaxman, the following system goals were established:

1. Design a system that facilitates streamlined modeling of
COVID-19 vaccination and pandemic outcomes

2. To the best of our ability, implement a placeholder model
that models the role of vaccination on pandemic outcomes

3. Implement a simple and intuitive user interface for tuning
the model and viewing the model output

4. Aggregate data from multiple reliable sources to streamline
up-to-date modeling

5. Create a modular system that promotes ease of use and lets
involved parties focus on their respective areas of expertise
(modeling, interpretation of data, etc.)

6. Focus modeling on a global scale

7. Incorporate model tuning for at least one of vaccine hesi-
tancy or global vaccine distribution



8. Design the system to be flexible; build a mechanism for
easily adding/removing different models

9. Ensure the system is robust and efficient

Each component of the greater system was designed with these
core goals in mind. Specific design processes are discussed in
greater depth below.

Backend

Data Collection/Parsing
Any type of COVID-19 vaccination modeling tool requires
some basic data in order to run; for example, vaccination rates,
death rates, reproduction numbers, and others. Therefore, for
our COVID-19 modeling tool, we composed a separate tool for
gathering data from various sources in order to make it easier
for model designers to gather the data necessary to run their
models. This tool also provides important data necessary for
display in the visualization tools and for the prototype/default
model. Additionally, the tool does some data parsing in order
to filter out the relevant data from these sources.

Data Collection
The primary data source used for this project is Oxford’s
Our World in Data (OWID) project. OWID has a collec-
tion of COVID-19 pandemic data useful for running any sub-
stantive model.[3] The data at the OWID project is in turn
drawn from multiple sources, including John Hopkins Uni-
versity, the Center for Disease Control in the U.S. (CDC),
and the World Health Organization (WHO). From this hub
of sources collected by the OWID project, the following
data was obtained: (1) the full data regarding COVID-19
death and case numbers for every country throughout the
pandemic, in the file full-data.csv; (2) the full COVID-
19 vaccination numbers for each country during the pan-
demic, in the file vaccinations.csv; (3) a file containing
some of the most recent COVID-19 data for each country
during the pandemic, in the file owid-covid-latest.csv;
and (4) a list of the most common vaccines in many coun-
tries by their manufacturer (Pfizer, Moderna, etc.), in the file
vaccinations-by-manufacturer.csv.

Meanwhile, one of the other relevant fields, population, was
drawn from a different data hub called JohnSnowLabs, which
contains the population data for each country over the last
several decades which is turn obtained from UN sources, in
the file population-figures-by-country.csv .[4] From
both sources the data is obtained in the form of raw .csv files
where each row represents a data for a given country. This
data is retrieved on a daily basis, in order to obtain the most
recent data for each country.

Data Parsing
In order to produce some data more useful for a general mod-
eling tool, the parsing tool performs several tasks that make
usage of the data easier. For example, in files that contain
data reaching back to the beginning of the pandemic, the data
parser can filter to keep only most recent data and output
it into a separate .csv file. This is done for both weekly
COVID-19 death and case numbers for each country during

the pandemic, with the files deaths.csv and cases.csv re-
spectively, as well as with population numbers, in the file
population-figures-by-country-parsed.csv. It can
also filter through .csv files with multiple irrelevant fields
to obtain just the necessary data, which is done with the file
owid-covid-latest.csv to obtain reproduction numbers
stored in r-values.csv. Additionally, since the prototype
model requires a daily average of vaccination numbers, the
data parsing tool also calculates the daily average number of
vaccinations over the last 7 days for each country, which are
stored in vaccinations-parsed.csv.

Moreover, the data parsing tool is able to convert files between
.json and .csv format. This is because in some instances -
such as with the visualization tool and our prototype model
- .json files may be more useful, while for other possible
models it could be that .csv files are in fact more useful. This
is done with all the parsed data files mentioned above. Addi-
tionally, the data parsing tool is able to create a full "master
.json" file that stores all the necessary data for running the
prototype model - this includes, on a country-by-country basis,
the number of days after the pandemic that vaccinations start,
the average efficacy of the vaccine, the daily vaccination rate,
the mortality rate, the reproduction number, vaccination up-
take percentage, the average number of days a person infected
by or exposed to the virus, and the population of the country.
This is stored in the file master-json.json.

Model
In order to create a presentable prototype, a simple model was
created to model pandemic outcomes. A deterministic SEIRD
model (a variation of the SEIR model) was chosen to be used
to model the pandemic before vaccination. After vaccination
a more complex version of the deterministic SEIRD model
which beaks the population into 3 categories (unvaccinated
and willing/able to be, unvaccinated but unwilling/unable to
be, and vaccinated) is used to model both hesitancy and the
introduction of vaccines.

Model Before Vaccinations Begin
Before vaccination begins, the pandemic is modeled using a
deterministic SEIRD model. In an SEIRD model, an individ-
ual is considered being part of 1 of 5 states: Susceptible (S),
Exposed (E), Infectious (I), Recovered (R), or Dead (D). The
contact rate, β , controls the rate of spread. It represents the
probability of transmitting disease between a susceptible and
an infectious individual. The incubation rate, ε , is the rate
at which exposed individuals become infectious. ε = 1/ed ,
where ed represents the average duration of the incubation
period. Recovery rate, γ = 1/id , is determined by the average
duration, id , of infection. The death rate, α , controls the rate at
which infectious individuals die. α = γ ·m where m represents
the average virus induced mortality rate (ie for every 1 infected
person, m people die). β is related to the basic reproduction
number (R0) the average number of people that one infected
person is likely to infect in a population without any immunity,
as follows: β = R0 · γ . The model also requires N, the total
number of people in the population.



The SEIRD equation can be described as a set of ordinary
differential equations.

dS
dt

=−βSI
N

(1)

dE
dt

=
βSI
N

− εE (2)

dI
dt

= εE − γI −αI (3)

dR
dt

= γI (4)

dD
dt

= αI (5)

This model was designed after considering several other types
of SEIR models. The simplest SEIR models do not distinguish
between dead and recovered, placing everyone after they be-
came infected into a removed category[8]. Since we wanted to
display the number of deaths, we needed some way to model
the number of deaths so decided to create the two separate
populations for dead and recovered. Other models did take
deaths into account, but also included a background death rate
in their models in addition to a virus induced fatality rate[5].
The background rate of death added an extra layer of complex-
ity that did not seem necessary for the level of modeling we
desired. A third variant briefly considered was the SEIRS, a
model where there is a possibility of reinfection after a person
recovers [1]. Current research reports that reinfections have
been reported but appear to be very rare, but very little data
has been collected on this [7] Although it could be playing a
part in the current pandemic outcomes, it seems to be currently
very small and was omitted from our models.

Initial reasonable values for the SEIRD model values β , ε ,
γ , α , were first gathered by trial and error. In order to do
this, the model was run with different parameters for the USA.
The predicted number of deaths from the model was com-
pared to the actual recorded deaths from the Covid Tracking
Project (https://covidtracking.com/data/download), which dis-
plays daily data from 1/13/2020 to 3/7/2021. After somewhat
reasonable values were estimated, minimizing the residual
sum of squares via gradient descent was used with these initial
values to further fit the parameters.

The model is run for a number of days specified by the user.
For each day it returns the number of individuals in each
category for that day.

Model After Vaccinations Begin
When vaccination begins, a more complex model is uti-
lized. This SEIRD variant splits the population into 3 groups:
able/willing to be vaccinated, unable/unwilling to be vacci-
nated, and vaccinated. The vaccine is assumed to have some
efficacy that prevents infection, and efficacy at preventing
critical outcomes from the virus.

In this model, the population is modeled where an in-
dividual is considered being part of 1 of 13 states:
S1,E1, I1,R1,S2,E2, I2,R2,S3,E3, I3,R3,D. S1,E1, I1,R1 states
are for individuals who are Susceptible, Exposed, Infectious,

Recovered respectively, and are unwilling/unable to be vac-
cinated. S2,E2, I2,R2 states are for individuals who are will-
ing/able to be vaccinated. S3,E3, I3,R3 are states for individu-
als who are vaccinated. D is the number of all individuals who
have died.

The SEIRD before vaccination model is run for a num-
ber of days equal to when the day vaccinations begin. At
this point the values for S,E, I,R,D are taken and used
to calculate the initial number of people in the categories
S1,E1, I1,R1,S2,E2, I2,R2. Let u be the fraction of the popula-
tion willing/able to be vaccinated. At this point, S1 = (1−u)S,
E1 = (1− u)E, I1 = (1− u)I, R1 = (1− u)R, and S2 = (u)S,
E2 = (u)E, I2 = (u)I, R2 = (u)R. Values for S3,E3, I3,R3 be-
gin as 0 as vaccination has not yet begun.

S2 individuals are vaccinated at a daily constant rate vac_rate,
which represents the number of vaccinations per day. When an
individual is vaccinated they move from S2 to S3. Individuals
in the S3 can be infected but are less likely to become so. The
equations for this vaccinated group are as follows:

dS3

dt
= vac_rate− βS3I

N
∗ (1− vi) (6)

dE3

dt
=

βS3I
N

∗ (1− vi)− εE3 (7)

dI3

dt
= εE3 − γI3 −αI3(1− vd) (8)

dR3

dt
= γI3 (9)

Where I = I1 + I2 + I3, vacrate is the number of individuals
vaccinated per day, vi is vaccine efficacy at preventing infec-
tion, and vd is vaccine efficacy at preventing death. Using
these two numbers has been seen in other models and based
off evidence that vaccinations can prevent severe instances of
the disease [10].

Frontend

Flexible IO and Customization
To build a flexible and interactive modeling framework (to
satisfy goals 1, 5, and 7), several levels of tuning and cus-
tomization were planned and incorporated.

Parameter Tuning
Public health officials require precise tuning of model parame-
ters to test various pandemic scenarios. Accordingly, building
frontend means for tuning parameters was deemed a necessary
component of the minimum viable product. To simultaneously
promote the maximum level of customization and ease of use,
we elected to include ways to tune both global parameters (i.e.
apply the same value to all countries) and local parameters (i.e.
set a parameter for a particular country). We moreover elected
to allow the user to choose between custom values and default
values generated daily from real data (or model defaults in the
event real data could not be found).

Considerable thought was dedicated to choosing the types of
parameters the user should be able to tune. We questioned
whether it would be more useful (and powerful) for the user to



explicitly adjust numeric model parameters (e.g. vaccine effi-
cacy, rate of transmission, etc.), which would require more epi-
demiological knowledge yet would provide more fine grained
tuning, or for the user to choose various qualitative scenar-
ios for a given category (e.g. vaccine type, high/low/medium
transmission rate, etc.), which would be more intuitive but
potentially limit the space of possible tests. For the sake of the
tool proof of concept, we elected to provide tuning for model
parameters (which were designed to be intuitive). In doing so
we provided a high level of customization and a more flexi-
ble dynamic between the front end and back end (discussed
below).

Changing Models
Building a modeling tool around a single model limits the util-
ity of the tool since every model makes different assumptions
and generates different results; that is, different models pro-
vide different insights. Accordingly, it was important to create
a flexible front end and back end that together accommodate
different models.

To accomplish this goal, we prioritized a modular design in
which the model in the back end conforms to a limited set of
constraints. We moreover planned to create a front end that is
sensitive to a collection of configuration files that reflect the
given model. The modeler can specify which parameters can
be tuned on the front end. Adding this functionality greatly
expanded upon existing tools, which are generally specific
to a single model (i.e. essentially just interactive visualiza-
tion added to a model). As a consequence of adding this
feature, however, we made it more difficult add scenario spe-
cific tuning, since the configuration is specifically intended for
numerical parameter tuning.

Visualization

Figure 1. This is an image of map showing "susceptible" population data
at Time (336) on tool

The overarching goal for this product was something very user
friendly, globally focused, that intuitively shows all the data
needed to make decisions about covid vaccines. With this in
mind we found tools that are related and wanted to expand
on that idea. Most pre-existing tools had lots of graphs and
data, but we wanted it to also be accessible without looking at
numbers, so we decided to include a world map as the primary
source for viewing data. With the map being the main focus,
we knew we still had to produce the same data that modelers
would need available. We included a drop down menu to

choose what outcome you wanted to view. Then we included
a time slider to see the status of outcomes at a given time
on the map. We also included a color scale to these maps so
that although numbers are not shown, relative numbers can be
interpreted from the colors shown. Each country having its
own color scale (see figure 1.)

Figure 2. This is an image of the graph being shown for Greenland after
it was clicked on in the map

On the data side we included current data available on mouse
hover to ensure that the current data that’s being shown on
the map can be interpreted for the raw numbers, but we also
included the functionality to get graphs on mouse click, to dive
deeper into the data. This opens up a new window and allows
user to view the graphs of the given country they clicked on.

SYSTEM ARCHITECTURE
System Overview

Figure 3. Flow of data across system components

The overall system is composed of 4 key components separated
across the frontend and backend. The backend is composed of
a central server that serves client requests for web resources
and model output, a data aggregation and parsing tool that
compiles vaccination data daily, and a modelling engine that
generates output given certain parameters. The frontend is
composed of a visualization tool that has a interactive map
and parameter tuning panes.

The data flow for a given model simulation is shown in figure
3 and has the following sequence:

1. Once daily the data scraper fetches data from Our World In
Data.



2. The data parser first formats the data, patches holes, and
compiles all of the data into a ’master-json’ file. The parser
then adds modeller-specified variables and default values
for each country based on a configuration file.

3. The master-json file is saved in a data store on the central
server.

4. Once daily the default model output is updated with the new
master-json file

5. When a user makes a connection to the web page, all of the
page contents are returned by the central server. Addition-
ally, a copy of the master-json file and default model output
is served to front end.

6. The front end displays the default data and maintains a copy
of the default parameters in the master-json.

7. The user tunes parameters as needed and clicks ’Simulate’

8. The customized parameters are sent as a POST request to
the central server

9. The central server parses the json into a dictionary and calls
the simulate_worldfunction, passing the parameters

10. The model simulates the pandemic for the given number
of days using the given parameters for each country and
returns the results

11. The central server returns the model results to the front end

12. The frontend displays the new model output

Backend
Parsing and Obtaining Data
The retrieval of data from both the OWID project and John-
SnowLabs is done by the file retriever.py. The file makes
simple HTTP requests to each server through which the
data for each file is obtained. This program also handles
file I/O; essentially, the retriever tool also helps to transfer
parsed/unparsed data in between files. After doing all data
collection and parsing, the retriever.py tool waits for one
day before running again.

The parsing itself is handled by the file
vax_data_parser.py. The parsing of the population
data, which obtains the population data for each country,
is done by the function population_parser. Notably,
the country of Eritrea doesn’t have as recent of data as
other countries, so the population data for Eritrea is slightly
older. The daily average of vaccinations over the last 7
days is calculated by the function vax_parser. In the case
where vaccination data is missing for one of the last 7 days
for a given country, the average will be calculated only
over the most recent days included in vaccinations.csv.
Meanwhile, the most recent weekly COVID-19 death
and case numbers for each country are obtained by the
function cases_deaths_parser, and the reproduction
numbers for each country are obtained by the function
r_values_parser.

The file json_maker.py contains a number of useful
functions related to .json files. For converting between
.csv and .json files, the fuction make_json can create a
.json file by mapping any column in a .csv file to a separate
column in the file. There is also a function, make_iso_json,
that compiles a file, countries-to-iso.json, which maps
the country names in these files to their three-letter ISO codes.
This is done in order to make sure that in each file, regardless
of any different spellings of country names, the data for each
country all ends up being stored in the same place in the
overall master-json.json file, since ISO codes are always
uniform. Since the full-data.csv file does not contain ISO
codes, a few individual ISO codes had to be hard-coded in
due to some different spellings in that file, specifically for
the country Micronesia. Finally, the make_master_json
function compiles the master-json.json file, which
contains all the default data necessary for running the model
and visualization tools. The data for vaccination rates, repro-
duction numbers, population, and mortality rates are obtained
from the files vaccinations.json, r-values.json,
population-figures-by-country-json.json,
cases.json,and deaths.json (where mortality rates
are found by dividing the weekly deaths from each country
by the weekly cases). Where data is missing from these
files for any country, default values are obtained from the
file global_defaults.json,which could be modified by
users. Since no data is obtained for vaccine efficacy, vaccine
start date, average days infected or exposed, and vaccination
uptake rate, the defaults in global_defaults.json will
always be used for these fields. These values are each mapped
in a nested dictionary to each country’s ISO code (see the
section Generating Model Results for the format).

Generating Model Results
Results from the model are retrieved by call-
ing the simulate_world function in models.py.
simulate_world takes in two arguments. The first is
param_dict which is a nested dictionary that matches the
format of the master-json file. The keys in the outer dictionary
are country codes, and the values are dictionaries which
have various keys (such as vaccination start date, vaccination
efficacy, etc.) and the associated value for that country.
Similar to the following format:

{"AGO": {"vac_start": 200, "vac_efficacy": 85,
"vac_rate": "18902",
"avg_days_in_exposed": 14,
"r": "1.1", "vac_uptake": 80.1,
"avg_days_in_infected": 14,
"mortality": 2.0259740259740258,
"population": "28813463"},

"LIE": {"vac_start": 200, ....},
...
}

The second parameter is num_sim_days, the number of days
to simulate.

For each country, the simulate_region function is called,
which uses the parameters provided for that country to run
the model. simulate_region returns a vector called v.



v[i][j]corresponds to the number of individuals in category
j on the ith day after simulation start. j = 0 for susceptible,
j = 1 for exposed, j = 2 for infected, j = 3 for dead, j = 4 for
recovered, j = 5 for vaccinated.

simulate_world returns a dictionary where the keys are
the country codes, and the values are the vector returned by
running simulate_region for that country.

Central Server
A central server facilitates client web requests and data ex-
changes, linking all of the system parts together. The server
was build on top of the simple python http.server test
server. We added a custom \POST path for parsing param-
eters passed from frontend and invoking the model on the
backend. The server was not designed with load or security
concerns in mind. Rather, it was designed to be a simple
module for linking the parts together for proof of concept.

Frontend
Customizing Parameters
Tuning of parameters in the frontend is accomplished using a
combination of html and javascript. The frontend maintains
two sets of data structures storing model parameters and model
output for each country. The first set of data structures is for
all of the default data and remains unchanged throughout the
modeling process. The second set of data structures is for all
of the customized data and reflects changes the user makes to
parameters using the UI. In both cases, the data structures map
country name to various parameter/model output values.

On page open, the output corresponding to the default country
parameters is displayed on the map and all of the custom
parameters are set equal the default parameters. Whenever the
user updates a parameter using the global parameter pane or
the country specific tuning pane, the parameters in the custom
parameter data structure are updated. Whenever the user clicks
reset, the customized parameters are set equal to the default
parameters. Because the default parameters have already been
cached, the reset functionality is very efficient. Whenever the
user clicks simulate, the customized parameters are passed to
the server backend as a .json file using a POST request. The
model output associated with those parameters is then passed
back to the frontend where it is displayed. The simResults
variable points to the model output that should be displayed
on the map based on whether the user has customized any of
the parameters.

Flexible Frontend
The parameter tuning radio/numeric input html elements in
the frontend reflect a configuration file created by the modeler.
In this way, the frontend can easily be modified when a new
model is added, and a modeler can choose how a public health
official interacts with their model.

On page load, the frontend loads the json configuration file and
creates a new html element for each item in the file. Default
values, ranges, and steps are assigned according to the con-
figuration file. Each html element has a generic name "input"
followed by a number. This number is used to reference the
parameter being tuned. In the configuration file, the modeler

specifies a mapping from the parameter name to the variable
in the custom parameters data structure (same fields as the
master-json) that should be updated when the parameter is
tuned. The front end maintains a data structure mapping input
number to master-json variable name so that changes for a
html element changes are reflected in the custom parameter
data structure. Event listeners are bound to each element,
and on input change the number is parsed from the element
name and the appropriate variable in the custom parameter
data structure is updated.

Map Visualization using D3
The main code for the map uses javascript. The driving source
of the map is a library called D3, which gives access to inter-
active maps. In D3 to draw the map we load in a geojson file
that holds data for the entire world. This gives us the backbone
of the map that we can build upon. The map has access to a
variable called simResults which holds the values of the out-
put from our model. We created an update() function which
updates the map according to which time index and scenario
we are currently in. The update evaluates the simResults
variable and chooses a color based on the value relative to total
population size to show for the given country (darker being
higher percentage).

Slider is also built on d3 and calls the update() function
when user changes position.

The map also has a on_click() function that will trigger a
popup window. The graph that is shown on the popup window
is built on a library chart.js that allows user friendly graphs.
With this library we evaluate the simResults and pass the
according data to the chart.js library to graph for the user.

The popup holds input for the user to choose values for given
parameters for a particular country which is discussed more in
the server module.

DISCUSSION

Take Aways
Whenever discussing models, the quote “All models are wrong,
but some are useful” by George E. P. Box comes to mind.
There are many different ways to model a pandemic, but not
all are useful. If the model is too simple, then the results may
be too inaccurate to be even considered as a benchmark. If
the model is too complex, even though the results might be
more accurate, it may be too complex for a user of our system
to understand and use. We had to balance this while working
on the model for our project, as we wanted the model to be
somewhat accurate while being user friendly for someone who
was not an expert in public health.

Creating a "one size fits all" generalized modeling framework
is a real challenge. Balancing parameter tuning simplicity,
minimal configuration, and support for a wide variety of pa-
rameters, models and scenarios is a very complex task that
requires careful selection of certain trade offs. In the end, our
system privileges highly granular customization at the cost
of configuration complexity and the loss of scenario level of
abstraction tuning.



Visualization is a hard task, there are often lots of libraries
that do similar things and knowing which way to go is a tough
decision. For something like d3 there is so much customization
that it can also make it a lot harder to do simple things. Having
many libraries at play it can also be difficult to get them to
interact with each other the way you want them to.

Areas of Improvement
The models used are highly simplified and do not account
for many important features of the pandemic or vaccinations.
It assumes a uniform R0 throughout the entire time period,
which is not true to real life where the effect of policies such
as social distancing causes the R0 to vary. Older people and
essential workers are more severely affected by Covid-19, but
our model does not take different population subsets, divided
by age or profession, into account. A model that took this into
account would likely much more accurate and would allow
the user to experiment with different allocations for different
groups. The vaccine model assumes that the vaccine is a single
dose that is effective right away, which is not true of COVID-
19 vaccines. It also assumes that vaccines are distributed at a
single daily rate, which does not reflect real world scenarios.
Most countries begin their vaccination programs slow and
speed up as they get more supply. Future work should either
be work to improve the current model, or integrate one made
by public health experts.

While we successfully implemented a degree of flexibility in
the greater system, the mechanism for changing models is still
somewhat cumbersome, and the types of models the system
supports are limited. To address this in future iterations, it
would be desirable to implement a page on the frontend and
that enables model/tuning configuration so the user can bypass
editing .json configuration files (less readable more mistake
prone). Additionally, it would be powerful to implement a
more generalized model interface so the tool can use models
written in languages other than python. It would be ideal if the
system supported a user optionally uploading their own model
into framework for testing.

Additionally, certain segments of the frontend and backend
could be optimized further to reduce browser burden and im-
prove user experience. Currently the system will repeat simula-
tion for a country even if no parameters have changed. It would
improve the response time of the frontend if the system in-
stead only repeated simulation for countries whose parameters
had been changed by the user on the frontend. Additionally,
country level simulation could be conducted in parallel in the
backend to greatly improve the time it takes to run the model.

The map does not currently have a legend. It would be good
to have a legend depict what each color on the map stands for,
and what values are mapped to those colors, as the values are
dynamic depending on the scenario outcome and what scale is
applied for color.

Another area of improvement in terms of mapping is that the
current mapping has a bit of lag, considerably because of the
redrawing that is going on in terms of updating. Maybe there
could be a different library or other functions of d3 that can

speed up this process so the interactions with the graphs and
sliders are seem less.

CONCLUSION
Through SEIRD models, data scraping online data sources,
server side post and get requests, and JavaScript/HTML vi-
sualizations, we were able to create a tool that effectively al-
lows public health officials to make informed decisions about
COVID-19 vaccinations. Nevertheless there is lots of room to
grow, as modeling can be better, speed can be improved, and
general UI changes could be made. However, the skills we
gained through learning new languages, different approaches
to modeling, and different ways to represent data across multi-
ple libraries and languages has been a great success across our
team. We’re hopeful that this tool can be used as a building
block for future work in this field and improvements can be
made to really make an impact on COVID and future viruses
to come.
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